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160 ?/ ABSTRACT 

Results f o r  t h e  f r e e  molecule mass flow rate through a f la t  p l a t e  

channel of f ini te  length, assuming diffuse molecular r e f l ec t ions  from the  

w a l l ,  are obtained and are i n  good agreement with previously obtained ap- 

proximate results. 

R e s u l t s  for the heat  t r ans fe r  between t h e  channel w a l l s  and t o  t h e  

environment due t o  free molecule flow ana thermal rad ia t ion  when t h e  

channel w a l l s  and t he  environment at t h e  ‘ in l e t  and e x i t  are a l l  a t  d i f -  

f e r en t  temperatures a re  given. * 

The heat  t ransfer red  by the  f ree  molecule flow is found t o  be sig- 

n i f i c a n t  when compared t o  thermal radiat ion f o r  conditions t h a t  would be  

* .  appl icable  i n  a thermionic converter. 

INTRODUCTION 

There i s  a general  i n t e r e s t  i n  t h e  ra ref ied  gas mode of heat  t rans-  . 
fer  because of t h e  low density environment that is  being encountered i n  

present day technology, When t h e  mean free path of t h e  molecules is la rge  

compared t o  t h e  model dimensions t h e  usual c o n t i q h n  t r ans fe r  equations, 

which are really l imi t ing  solut ions f o r  very smll mean free molecule 

paths, no longer apply. The problem m u s t  then be  solved using t h e  k ine t i c  
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The problem of free molecule f l o w  heat  t r a n s f e r  between i n f i n i t e  

plates was t r ea t ed  by  Knudson as discussed i n  (l), 

t r ans fe r  i n  an adiabet ic  tube and nozzle w i t h  free molecule flow was 

t r ea t ed  i n  ( 2 , 3 ) ,  

molecule stream i s  t rea ted  i n  (4) .  

The problem of heat 

The heat t r ans fe r  t o  a nonconvex surface from a free 

"he model analyzed here consis ts  of a f la t  p l a t e  channel of f i n i t e  

length with the p l a t e s  a t  d i f f e ren t  temperatures and w i t h  a free molecule 

flow between them as shown i n  Figure 1. 'The r i g h t  and l e f t  environments 

of t h e  channel are at  d i f f e ren t  temperatures and densi t ies ,  

molecular stream incident  on the  surface of the channel w a l l  w i l l  be 

calculated,  

formed 'by t h e  plates is found, 

ta ined  by Clausing (5) using an approximate method of solution, 

t o t a l  energy leaving the  surface i s  obtafned, 

energy t ransfer red  between t h e  surfaces and t h e  environment is found. It 

is assumed that t h e  w a l l  temperature is isothermal along i t s  length-and 

that the  accomodation coeff ic ients  a re  constant f o r  both plates, 

t h e  thermal radiat ion heat transfer i s  calculated f o r  a similar model, 

and t h e  heat t ransfer red  by radiat ion i s  compared t o  t h a t  f o r  free molecule 

F i r s t , - t h e  

Fromthis  t h e  mass t ransfer  f l o w  rate through the channel 

This w i l l  be compared t o  t h e  r e s u l t s  ob- 

Then t h e  

Using these  results the  ne t  

Finally,  

flow f o r  a pa r t i cu la r  s i t ua t ion  tha t  might arise i n  thermionic energy converters. 

NOTATION 

A1 

AL 

cv 
E 

area of p l a t e  

heat  capacity a t  constant volume 

ener@;y per  un i t  mass of the molecular stream, 
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= rate of energy per un i t  area leaving a surface 

= t o t a l  energy emitted and ref lected leaving surface 1 per  unit 

area a t  location xo 

= shape fac tor  from lef't end t o  element a t  point 

= mass f l a w  ramo, ( m  - mR)/(mL - mR) 

= kernal, Ep. (3) 

= length of plates  divided by distance between them 

= weight of molecule 

= molecular w e i g h t  

= mass flow rate per uni t  area 

= mass flow rate through the channel per unit cross-sectional &rea 

= number of molecules per unit volume with veloci ty  i n  range V t o  

x, Eq, (2) 

V + dV with a net  veloci ty  component i n  t h e  direct ion of the 

posi t ive normal 

= t o t a l  heat r a t e  leaving surface 
r) 

8.31xl.O' sq., cm, or 1 987 cal, 
Mw sq, see,' .OK M w 5  

= gas constant, 

= temperature 

= average nontranslational i n t e r n a l  energy of t he  molecules 

= veloci ty  of molecule 

= distance d o n g  lower p h t e  divided by the  distance between the  

plat es  

Greek Letters : 

a, = accomodation coef f i t i enkj  emissivity 
a 

P = 1/( 2RT) 1/2!, Eq, 

5 = distance d o n g  upper p l a t e  divided by distance between p l a t e s  

P = density 



= densi ty  a t  standard conditions, 273' K and 1 a t m  

= Stefan Boltzmann constant, 1.36~10'~~ cal,/sq, cm, sec, ?K4 

PS 

(J 

cp = subsolutions as given by  Eqs. (10) t o  (14) 

T = integrated mean, 

- 
cpF = in tegra l  dx 

+ = angle 

Subscripts r 

A-B = from A t o  B 

L = l e f t  environment 

R = r i g h t  environment 

t 

X 

5 

0 = locat ion on surface 

1 = lower p l a t e  

2 = upper p l a t e  

= t o t a l  leaving surface including re f lec ted  and emitted streams 

= pos i t ion  along lower p l a t e  

= pos i t ion  along upper p l a t e  

ANALYSIS 

The model analyzed consis ts  of two p la t e s  whose length divided by The 

d is tance  between them i s  2 ,  The plates  are i n f i n i t e  i n  width and are 

a t  temperatures T, and Tz, respectively, The l e f t  and r i g h t  environ- 

ments a r e  a t  temperatures TL and TR and dens i t i e s  pL and p , re- 

spectively,  as shown i n  Figure 1. 

equilibrium i n  the  l e f t  and r igh t  environment and t h a t  t h e  densi ty  of t h e  

R 

It i s  assumed that there  is a Maxwellkn 
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gas is  su f f i c i en t ly  low so that the mean free path of the molecules-is 

large and therefore  the  effect  of intermolecular col l is ions i n  the  channel 

can be neglected, 

part of the w a l l  must be calculated, 

F i r s t ,  the  t o t a l  number of molecules incident on any 

Mass Flow Rate Leaving The Wall 

The t o t a l  mass flow per uni t  wall area mx0 reaching a surface ele- 

ment a t  point due t o  the  d i rec t  inf lux of molecules f romthe  open 

l e f t  and r igh t  ends and by re'bounding molecules from t h e  opposite w a l l  

is 

xo 

2 
mxO = ?LFxO-L i- "RFxO-R + $;o meK(xo, e 1 ag (1) 

The term mL 

open left  end per un i t  area and is derived in t he  appendix as equal-€o 

mL = P,.(RT&)~/'. The term Fx-L is the usual shape f ac to r  used €n 

rad ia t ion  that gives t H e  f rac t ion  of molecules entering the  channel 

times the  entrance area that m e  incident on a uni t  area of the  wall a t  

locat ion xps The term mg is the mss flow r a t e  of molecules per unit 

area leaving the upper wall a t  location 

flow ra%e incident a t  t h a t  point, 

leave the  surface in a d i f f p e  manner, 

factor  that gives t h e  f rac t ion  of the emitted molecules from the  i n f i n i t e  

sti'ip of d i f f e r e n t i a l  width a t  

the elemental area a t  x per un i t  area, These are given by 

i s  the m a s s  f l o w  r a t e  o f  molecules entering throughthe  

g and i s  equal t o  the  mass 

It i s  assumed that the  molecules- 

The t e r m  K(x,E) is  the shape 

E times the area of t h i s  s t r i p  that reach 
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c J 

and a r e  derived f r o m  t he  interchange fac tor  given on page 2 1  of Jakob ( 6) 

The s i m i h r i t y  of equation (1) t o  the equation f o r  radiant  heat t r ans fe r  

i s  discussed i n  (2). 

If all t h e  m ‘ s  i n  Equation (1) is equated t o  mR, t h e  r e su l t i ng  

re la t ionship  will be  cor rec t  as can be seen by the in tegra t ion  of the  

i n t e r g r a l  term. This corresponds t o t h e  case of an isothermal enclosure 

where t h e  rate of molecules per un i t  area leaving any surface of the en- 

c losure i s  t h e  sames Adding t h i s  t o  Equation (1) gives mer some fe- 

arrangement 

From the  symmetry of t h e  problem, a t  equal distances along the  p l a t e s  

mxo = mEO o r  f, = (fe)S=x. The function fx is antisymmetric, 

f ( x )  = 1 - f( z - x), as can b e  proved by following a s i m i l a r  procedure as 

discussed i n  (2). The solut ion t o  Ergatton (4)  was obtained by numerical 

i n t eg ra t ion  and i t e r a t ion ,  The r e su l t s  are shown i n  Figure 2 f o r  various 

values of  2, 

Mass Flow Rate Through The Flat P la te  Channel 

The ne t  mass flow rate through the channel per  un i t  entrance area 

can be found from 
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2 
mER = mL - 2 S,’ mxFx-L - k R  - 2 mRFx-R 

The first term on t h e  r igh t  is the  mass flow r a t e  per un i t  

-> (5) 

entrance area 

entering the  channel, the  second term i s  t h e  mass flow rate leaving 

through the entrance that comes f’romthe walls, 

gives, by use of the  reciproci ty  rule  f o r  shape factors,  FLmX ~ A L  = Fx-L d4,, 
t he  f rac t ion  of t h e  mass rate leaving the  w a l l s  per unit wall area t h a t  

i s  transported out  through the  entrance of t he  channel t i m e s  t he  entrance 

area of t h e  channel, 

the  i n l e t  is equal, t o  t h e  amount leaving from the  lower w a l l  by symmetry, 

The last  two t e rn  give the  mas8 r a t e  leaving through the  i n l e t  that enters  

t he  r igh t  end and has no co l l i s ion  with the  wall. 

The shape f ac to r  Fx-L 

The ma68 r a t e  leaving from the  upper wall through 

Since 

n7 
equal t o  F,,R dx Eq. (5) can be rewri t ten as 

The mass flow rates through the channels are shown i n  Figure 3. It’ can be  

seen that the  net  through flow decreases as the length becomes Larger, 

r e s u l t s  a r e  compared t o  the  solution of Clausing as  given i n  (5) which was 

obtained by assuming a l i nea r  form of with an added correction fac tor  

and are i n  good agreement w i t h  the  more exact. present solution, 

These 

fx 

Total  Energy Leaving The Surface Element 

The t o t a l  energy per uni t  area e x O , t  leaving surface 1 a t  m i n t  xo 

is derived i n  the  same manner as  Eq. (27)  i n  ( 2 > ,  The accommodation coef- 

f i c i e n t  is defined as  
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where 

uni t  area and 'grGX 

away from the surface if all t he  incident molecules achieved thermal. equi- 

(exO,t)incident is  t W  t o t a l  energy incident on the  surface per 

i s  the  r a t e  at which the  energy would be carr ied 

l ibrium with the  w a l l ,  This can be  rewrit ten as 

(m 
Where EL is the  energy per unit mass of t he  strew entering from t h e  

l e f t  end and i s  derived i n  t h e  appendix, This assumes accommodation coef- 

f i c i e n t s  a are equal f o r  both isothermal walls and all the molecules are 

assumed t o  leave t h e  wal ls diffusely. 

a r e  equal t o  eR and e[ , t  If it is assumed t h a t  exO,t, mEl, mRER, 

i n  Equation (7a) ,  t h i s  re la t ionship is $till t r u e  as can be proved by 

integrat3on of the  in t eg ra l  t e r m  and adding t h i s  t o  Equation (7b )  t o  give 
P 

Because of t h e  l i n e a r i t y  of the  problem, t he  pr inc ip le  of superposition 
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I can be  used t o  reduce the problem into8 simpler parts that can be  added to- 

.. where 

These s ~ s o l u t i o n s  have some physical significance. 

I 
1 

If Tz 

are equal t o  TR w d i l e  the  lower surface is a t  TI, and if mL = mR, 

t h a t  is, t h e  dens i t ies  as wYL EE t h e  teqxr&ies ul" the  l e f t  and r i g h t  

environment are equal, then for t h i s  case the  t o t a l  energy leaving the  

lower surface is  

upper surface is  eS,t = eR + cpl-zB(%El - eR). The c m e s  for cp 

ex,t = eR + cpl-lB(%E1 - eR) and the  energy l e a d n g  the 

1-IB 
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a r e  given i n  Figure 4 f o r  various values of 2,  It can readi ly  and %-2B 

be seen that the  l imi t ing  cases fo r  2 = 0 are (cp ) = a and 1-u 2 4  
-' 1 

= 0 and t h e  l imit ing cmes f o r  2 = 03 are ( Q - ~ )  2-xD = - (%-2B) 2 4  2 - a  
1 - a  
2 - a  and (%-2B) 2-m = -, The resu l t s  a re  symmetrical around X/Z = 0.5. I n  

t h e  l i m i t  as 

the l imit ing case of a = 1 the  solution reduces t o  'pl-lB = 1 and 

a --* 0 the  solution reduces t o  'pl-lB = 'pl-zB = 0, while i n  

= 0, %-2B 

Similarly, i f  T1 = Tz = TRY mL = mR, and TL # TR, t h e  energy leav- 

ing e i the r  surface is given by e 

are given i n  Figure 5, The l imit ing solution when 2 = 0 I 6  

= eR + 'plmL (eL - eR)-  These FeSUltS 
x,t 

- a) and for  2 ('p1-L)l-rO = 2 i s  (TlmL) 21a = 0. me l imit ing Golution 

f o r  a = 1 is 'pl-L = 0; the  l imit ing solution fo r  a = 0 is  the  same as 

Equation ( 4 )  and is given i n  Figure 2. 

Finally, if T1 = Tz = TR and i f  eL = eR bu t  mL # mR, then the  

t o t a l  energy leaving e i the r  surface is given by 

e = eR -F (mL - mR)ER( 'p1 -u  + 'p1-a). The results fo r  'pl-u and 
x,t  

'p1-2A 

= a/2 and 'pl-a = 0, 'pl-lA 

are shown i n  Figure 6, For 2 = 0 the solution reduce t o  

N e t  Energy Leaving Surface 

The net  energy leaving surface 1 is t h e  difference between the  emitted 

and absorbed energy: 

Since 
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Equation (15) becomes 

( 1 7 )  q Q1 =*& [(Elmx- ex,t + e R  - eR)dx 

2 

Since $ f, dx = because of the antisymmetry, Equation (17) be- 
2 

comes 

where the bar denotes t h e  integrated average value, 

heat  leaving wKll 2 would be given by 

Simflarly, t he  ne t  

o r  

cp 1 The integrated values 5 = - nee* t o  evaluate  (ex,% - eR 
2 

from Equations (10) and (11) are given i n  Figme 7. 

N e t  Energy f r q  the Environment 



- 12 - 

which can be wri t ten as 

which is  equal t o  

'L eR - I(.x,t-'R)Fx-LJ .. eR)F[- 3 QL 
AL 
- =  

wfth Equations (10) and (ll) g5-s VAL. 
b y  conservation of energy t h e  net energy f r o m t h e  r i g h t  s i d e  can be 

obtained f r o m  

i n  most cases where t h e  f r e e  molecule flow is important t h e  thermd 

rad ia t ion  w i l l  also be important. It i s  of i n t e re s t ,  therefore,  t o  give 

t h e  rad ia t ion  resul ts .  

f o r  t h e  free molecule flow, 

here  is s i m i l a r  t o  one jtreated i n  ( 7 ) ,  b u t  it includes the  effects of t h e  

r i g h t  and l e f t  environments that i n  ( 7 )  were neglected. 

These can be obtained from equations similar t o  those 

The radiat ion problem f o r  t h e  modeltre#,ted 

From an energy 
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I n  t h i s  case exO,t i s  the  t o t a l  ener@;y leaving point xo by rad ia t ion  

and eL and eR for  th i s  case are equal t o  OT; and UT:. The emissivity 

of  t he  surfaces is ghsn by a, Equation (25) can a l so  be wr i t ten  as 
/ 

- e p ( x 0 ,  S)dS I exo, t 

A s i m i l a r  equation would apply for w a l l  2: 

Since this equation is linear, by superposition, it cas be reduced t o  

The term ex,t - eR 

Eq' (28) by the use of Figure 7, 

is obtained by finding t h e  integrated average value of 
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Similar ly  f o r  w a l l  2, 

= eL - eR - (-) ( =-I QG (1. = a) - 
A 1  a 

The energy enter ing from t he  l e f t  end i s  a l s o  obtained as beforet  

which can be  wr i t ten  as 

. 
- e  F (33) e , t  R) e-L 

- e  F -  - ( e  QL 
x , t  R) x rL  

By the  use of Equation (24) QR can then a l s o  be found, 

Example Case 

For purposes of i l l u s t r a t i o n  and t o  ind ica te  the  magnitude of t h e  . 

f r e e  molecule heat transfer an exanrple i s  car r ied  out, Consider t h e  case 

where t h e  l e f t  and r i g h t  environments and one w a l l  are a t  equal tempera- 

tures and t h e  dens i t ies  of the  l e f t  and r i g h t  environments a r e  equal wbile 

the other  wall i s  a t  temperature 

i n  a thermionic energy convertor. 

Tl. This type of s i t ua t ion  may a r i s e  

For  t h i s  case the  f r e e  molecule heat 

transfer from Equations (10) and (18) i s  seen t o  be 

Simi la r ly  f o r  radiat ion,  from Eqs, (28 )  m d  (30) 

Taking a r a t i o  gives 
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is the  
PS 

The gas is taken as argon a t  a density of 

densi ty  a t  standard conditions (273' K and 1 a t m ) ,  and t h e  plates are 

tungsten with p l a t e  1 a t  2000° K and p l a t e  2 a t  500° K. 

s i v i t y  is taken equal t o  0.3 and therefore 

where 
P S  

The w a l l  emis- 

sq, cm. sec. 
cal. 

= 0.107 1 - a  

The accommodation coeff ic ient  for the argon-tungsten combination is-given 

i n  (8) as 0.85, Also 

= 2 , 2 9 6 ~ 1 0 ' ~  lY* 
sq. cm. sec. 

R, Since f o r  argon cv = - 3 
2 

El - ER = 2R(T1 - T ) = 149 cal./g. R 
Combining these r e s u l t s  gives 

QLconv = 0.21 

'1, rad 

which indica-bes t h a t  t h e  free molecule flow heat t ransfer  i s  not negl igi-  

b l e  f o r  conditions that might occur i n  a thermionic device, 

however, w i l l  depend strongly on the  conditions chosen. For higher 

w a l l  temperatures thpn chosen here t h e  radiat ion heat t r a n s f e r  w i l l  in -  

This r a t io ,  

a 

crease because the radiat ion depends on t h e  temperature t o  the  fourth 

power. For higher densi t ies  t h e  f r e e  molecular heat transfer w i l l  i n -  

crease since it i s  d i r e c t l y  proportional t o  the density. A t  very high 

d e n s i t i e s ,  however, t he  present solutions are no longer applicable be- 

cause t h e  mean f r e e  path w i l l  b e  small compared t o  t h e  chamel  width, 

and t h e  e f f ec t  of intermolecular col l is ions w i l l  become important. 



- 16 - 

The dimension of t he  channel f o r  f r e e  molecule flow t o  occur can be 

found i f  we know t h e  mean f r e e  path of  t h e  gas molecule. For hard sphere 

molecules the  mean free path L, i s  given by 

where am is  t h e  molecular cross section. Table 1.6 i n  (8)  gives f o r  

argon 

L, = 6,2~lO’~ 2 cm, 
P 

For p,/p of lo4, & i s  0.062 cm. which is  large compared t o  distance 

between t h e  p la tes  used i n  thermionic e n e r a  convectors. 

RE23ULTS AWD CONCLUSIONS 

The present results can be used t o  f ind  the mass flow through a 

channel i n  a free molecule environment, and they a r e  i n  good agreement 

with t h e  approximate solution of Qlausing. 

surfaces  and the environment by  f r e e  molecule flow and by thermal radiat ion 

The heat t r ans fe r  between the  

can be found f o r  a rb i t r a ry  combinations of temperatures by superposition 

of simple solutions.  A comparison of t h e  radiat ion heat t r a n s f e r  t o  t h e  

free molecule heat t r a n s f e r  i n  a sample case tha t  would mise i n  a - 

thermionic converter shows that the  f ree  molecule heat t r ans fe r  can be 

s ign i f i can t  when compared t o  t h e  rad ia t ive  heat t ransfer .  
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A P P W I X  - MASS FLOW TIIROUGH-AN AFEA ELEWEZIT 

The m a s s  f l o w  rate throagh an elemental area dA with a Maxwellfan gas 

below it can be calculated as follows, Below dA the- are Nv 

molecules per un i t  volume with ve loc i t ies  i n  t h e  range of V t o  V + dV, 

and a l l  possess a ve loc i ty  component i n  t h e  d i rec t ion  of t h e  pos i t ive  

normal on 1 dA, Assuming a Maxwellian d i s t r ibu t ion ,  

where p i s  the local gas density, p equals and M is  t h e  mas13 

of a gas molecule, Sinee the molecules are t rave l ing  equally i n  a l l  d i rec-  

t i ons  i n  the  hemisphere, the nuuibeer moving i n  t h e  d i rec t ion  

so l id  angle dcu i s  Nv 2.n' O f  these, the  number of molecules i n  t h e  

volume of slant height V A t  and area dA w i l l  cross dA i n  t i m e  At. 

These can be wr i t ten  as Nv z;i dLu V cos 

Jr i n  t h e  

dLu 

dA at. Thus, t he  molecules through 

dA are d is t r ibu ted  according t o  Lamberts cosine l a w  and cos Jr du a can 
'Jc 

be wr i t ten  as 

rad ia t ion  calculations,  

flow leaving dA i n  t h e  so l id  angle dru gives dA w&re 'm is  

FdA-dw dA, which is the same shape f ac to r  used i n  thermal 

Integrated over all ve loc i t i e s  t o  give the  mass 

The m can be considered a6 t he  t o t a l  mass flow rate crossing t h e  surface 

I ,  per u n i t  area, 

The energy of t he  molecular stream thr$ugh dfl can b e  calculated as 

follows. The number of' molecules crossing &I per unFt  t i m e  p e r u n l t  area 

is  

over t h e  upper hemisphere. 

NvV/2 as obtained by integrat ing t h e  number crossing a so l id  angle 

The energy of each mdecule  i n  the  reservoir  
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is 1/2 MVz + MU where U is t h e  average nontranslat ional  i n t e rna l  

energy of t h e  molecules i n  t h e  reservoir enclosure. Then the  wergy  

crossing dA pbr un i t  area per  unit time can be integrated over a l l  V 

t o  give 

where E 

dA. 

is  the energy 'per u n i t  ma66 of t h e  MaxweQian stream crossing 
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